metal-organic compounds

 $\mu = 1.41 \text{ mm}^{-1}$

 $0.22 \times 0.16 \times 0.11 \text{ mm}$

16253 measured reflections

2448 independent reflections 2237 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.026$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[diagua(2,2'-bipyridine- $\kappa^2 N, N'$ zinc]- μ -2,2'-[1,4-phenylenebis(sulfanediyl)]diacetato- $\kappa^2 O:O'$]

Hong Lin^a* and Xiao-Juan Wang^b

^aJinhua Professional Technical College, No. 1188 Wuzhou Street, Jinhua, Zhejiang 321007, People's Republic of China, and ^bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China Correspondence e-mail: jh_ll@126.com

Received 22 November 2011; accepted 23 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.070; data-to-parameter ratio = 16.7.

In the polymeric title complex, $[Zn(C_{10}H_8O_4S_2)(C_{10}H_8N_2) (H_2O)_2]_n$, the Zn²⁺ ion lies on a twofold rotation axis and exhibits an octahedral environment, in which it is coordinated by two trans O atoms from two symmetry-related 2,2'-[1,4phenylenebis(sulfanediyl)]diacetate anions, two N atoms from one 2,2'-bipyridine ligand, and two cis O atoms from water molecules. The dihedral angle between the two pyridine rings is 11.5 (1)°. Adjacent Zn²⁺ ions are bridged in a monodentate manner by the diacetate anions, forming a chain structure extending parallel to [101], and are further linked into the final three-dimensional structure by $O-H \cdots O$ hydrogen bonds between the coordinating water molecules as donor and the non-coordinating carboxylate O atoms as acceptor atoms.

Related literature

For background to 1,4-benzenebis(thioacetic acid), including its synthesis and coordination behaviour, see: Yin & Feng (2009); Yin et al. (2009); Chen et al. (2010); Wang et al. (2011*a*,*b*); Jiang *et al.* (2012).

Experimental

Crystal data $[Zn(C_{10}H_8O_4S_2)(C_{10}H_8N_2)(H_2O)_2]$ $M_r = 513.87$ Monoclinic, C2/c

```
a = 20.4396 (8) Å
b = 12.8695 (8) Å
c = 7.9798 (4) Å
```

 $\beta = 90.765 \ (3)^{\circ}$ V = 2098.88 (19) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.761, T_{\max} = 0.853$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of
$wR(F^2) = 0.070$	independent and constrained
S = 1.04	refinement
2448 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
147 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Selected bond lengths (Å).

Zn1-O1W	2.0896 (11)	Zn1-O1	2.1529 (10)
Zn1-N1	2.1477 (13)		

Table 2

```
Hydrogen-bond geometry (Å, °).
```

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} O1W - H1WA \cdots O2^{i} \\ O1W - H1WB \cdots O2 \end{array} $	0.83(1)	1.90 (2)	2.7107 (15)	170 (2)
	0.82(1)	1.86 (2)	2.6582 (16)	164 (2)

Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2568).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J., Yin, J. L., Wang, X. J. & Feng, Y. L. (2010). Chin. J. Inorg. Chem. 26, 1311-1314.
- Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Jiang, Z. G., Wang, X. J., Yin, J. L., Feng, Y. L. & Cheng, J. W. (2012). Chin. J. Inorg. Chem. In the press.

Sheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. J., Yin, J. L., Chen, J. & Feng, Y. L. (2011b). Chin. J. Inorg. Chem. 27, 367-371.
- Wang, X. J., Zhan, C. H., Feng, Y. L., Lan, Y. Z., Yin, J. L. & Cheng, J. W. (2011a). CrystEngComm, 13, 684-689.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yin, J.-L. & Feng, Y.-L. (2009). Acta Cryst. E65, 01206.
- Yin, J. L., Feng, Y. L. & Lan, Y. Z. (2009). Inorg. Chim. Acta, 362, 3769-3776.

supplementary materials

Acta Cryst. (2012). E68, m105 [doi:10.1107/S1600536811055310]

catena-Poly[[diaqua(2,2'-bipyridine- $\kappa^2 N, N'$)zinc]- μ -2,2'-[1,4-phenylenebis(sulfanediyl)]diacetato- $\kappa^2 O:O'$]

H. Lin and X.-J. Wang

Comment

1,4-Benzenebis(thioacetic acid), ($C_{10}H_{10}O_4S_2$), is a flexible aromatic multi-carboxylate ligand, which can be prepared from 1,4-benzenebisthiol (Yin & Feng, 2009). Compared with rigid ligands, these flexible aromatic carboxylate ligands contain more coordination sites (*viz.* S and O atoms) to construct various extended structures with different metal ions. Recently, some complexes derived from 1,4-benzenebis(thioacetic acid) with bipyridine ligands have been reported (Yin *et al.*, 2009; Chen *et al.*, 2010; Wang *et al.*, 2011*a,b*; Jiang *et al.*, 2012). Here we report the synthesis and structure of a new complex, [Zn($C_{10}H_8O_4S_2$)($C_{10}H_8N_2$)(H_2O)2]n, (I).

Complex (I) is isotypic with its Co(II) analogue (Jiang *et al.*, 2012). A view on the molecular structure of (I), showing the coordination environment of the Zn^{2+} ion, is presented in Fig. 1. The asymmetric unit consists of one Zn^{2+} ion (situated on a twofold rotation axis), half of a $[C_{10}H_8O_4S_2]^{2-}$ anion, half of a 2,2'-bipy molecule, and one coordinating water molecule. The Zn^{2+} ion is six-coordinated by two O atoms from two symmetry-related $[C_{10}H_8O_4S_2]^{2-}$ anions (Zn—O 2.1529 (10) Å), two N atoms from one chelating 2,2'-bipy molecule (Zn—N 2.1477 (13) Å), and two water molecules (Zn—O 2.0896 (11) Å) to form a slightly distorted octahedral geometry. The two pyridine rings in the bipy ligand are almost parallel with a dihedral angle of 11.5 (1)°. As shown in Fig. 2, adjacent Zn^{2+} ions are monodentately linked by the $[C_{10}H_8O_4S_2]^{2-}$ anions to form a chain structure running parallel to [101]. The chains are further linked by O—H…O hydrogen bonds to form the final three-dimensional supramolecular architecture (Fig. 3).

Experimental

A mixture of 1,4-benzenebis(thioacetic acid) (0.103 g, 0.4 mmol), $ZnCl_2.6H_2O$ (0.054 g, 0.4 mmol), 2,2'-bipy (0.031 g, 0.2 mmol), and Na₂CO₃ (0.042 g, 0.4 mmol) in H₂O (16 ml)/C₂H₅OH (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h, then cooled to room temperature over 3 d. Colourless crystals suitable for X-ray analysis were obtained.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93Å and aliphatic C—H 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The oxygen-bound H-atoms were located in difference Fourier maps and refined with an O—H distance restrained to 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x + 1,y,-z + 1/2.]

Fig. 2. The chain structure of the title complex. All H atoms have been omitted for clarity.

Fig. 3. The three-dimensional supramolecular structure built through O—H \cdots O hydrogen bonds (dashed lines).

$catena - Poly[[diaqua(2,2'-bipyridine-\kappa^2N,N')zinc] - \mu - 2,2' - [1,4-phenylenebis(sulfanediyl)] diacetato-\kappa^2O:O']$

F(000) = 1056

 $\theta = 1.9-27.7^{\circ}$

 $\mu = 1.41 \text{ mm}^{-1}$ T = 296 K

Block, colourless $0.22 \times 0.16 \times 0.11 \text{ mm}$

 $D_{\rm x} = 1.626 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7952 reflections

Crystal data

 $[Zn(C_{10}H_8O_4S_2)(C_{10}H_8N_2)(H_2O)_2]$ $M_r = 513.87$ Monoclinic, C2/c Hall symbol: -C 2yc a = 20.4396 (8) Å b = 12.8695 (8) Å c = 7.9798 (4) Å $\beta = 90.765$ (3)° V = 2098.88 (19) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer	2448 independent reflections
Radiation source: fine-focus sealed tube	2237 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -26 \rightarrow 26$
$T_{\min} = 0.761, T_{\max} = 0.853$	$k = -15 \rightarrow 16$
16253 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.070$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 0.7442P]$ where $P = (F_o^2 + 2F_c^2)/3$
2448 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
147 parameters	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1.				• ,	. 1.	1 ,	,	182	
Fractional	atomic	coordinates	and is	ntronic	or Pl	nnvalent	isotron	ic dis	nlacement	narameters	IA^{-}	4
1 / actionat	aiomic	coordinates	unu is	onopic	01 01	juivaieni	isonop	ic and	pracement	parameters	(11)	1

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	0.725191 (16)	0.2500	0.03569 (9)
S1	0.676748 (19)	0.62114 (4)	0.78141 (5)	0.04863 (12)
N1	0.44065 (7)	0.85617 (9)	0.31662 (16)	0.0391 (3)
O1W	0.57320 (6)	0.61941 (8)	0.18683 (14)	0.0435 (3)
H1WA	0.5703 (10)	0.5693 (13)	0.123 (2)	0.052*
H1WB	0.5785 (10)	0.5933 (15)	0.2793 (18)	0.052*
01	0.54190 (6)	0.72445 (7)	0.49896 (13)	0.0398 (2)
O2	0.57240 (6)	0.55857 (8)	0.50514 (13)	0.0446 (3)
C1	0.38250 (9)	0.85086 (14)	0.3913 (2)	0.0484 (4)
H1A	0.3633	0.7861	0.4061	0.058*
C2	0.34980 (10)	0.93842 (17)	0.4477 (2)	0.0597 (5)
H2A	0.3089	0.9329	0.4966	0.072*
C3	0.37950 (11)	1.03389 (15)	0.4292 (3)	0.0618 (5)
H3A	0.3594	1.0937	0.4688	0.074*
C4	0.43876 (10)	1.03996 (13)	0.3523 (2)	0.0532 (4)
H4A	0.4592	1.1040	0.3391	0.064*
C5	0.46836 (8)	0.94978 (11)	0.29374 (19)	0.0403 (3)
C6	0.56711 (6)	0.64669 (10)	0.56961 (17)	0.0319 (3)
C7	0.59312 (7)	0.66315 (13)	0.74760 (18)	0.0395 (3)
H7A	0.5652	0.6258	0.8245	0.047*
H7B	0.5901	0.7365	0.7746	0.047*
C8	0.71752 (7)	0.69346 (13)	0.6228 (2)	0.0408 (3)
C9	0.71738 (8)	0.65950 (13)	0.4586 (2)	0.0479 (4)
H9A	0.6958	0.5983	0.4300	0.057*
C10	0.75080 (8)	0.78402 (14)	0.6640 (2)	0.0475 (4)

supplementary materials

H10A	0.7518	0.8070	0.7745	0.0)57*	
Atomic disp	placement parameter.	$s(\hat{A}^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04999 (16)	0.02228 (13)	0.03467 (14)	0.000	-0.00485 (10)	0.000
S 1	0.0406 (2)	0.0562 (3)	0.0490 (2)	0.00141 (17)	-0.00659 (17)	0.01881 (18)
N1	0.0518 (7)	0.0284 (6)	0.0367 (6)	0.0019 (5)	-0.0129 (5)	-0.0020 (5)
O1W	0.0664 (7)	0.0291 (5)	0.0349 (5)	0.0064 (5)	-0.0039 (5)	-0.0045 (4)
01	0.0540 (6)	0.0316 (5)	0.0336 (5)	0.0051 (4)	-0.0085 (5)	-0.0008 (4)
02	0.0661 (7)	0.0290 (5)	0.0385 (5)	0.0007 (5)	-0.0048 (5)	0.0043 (4)
C1	0.0531 (9)	0.0449 (9)	0.0468 (9)	0.0033 (7)	-0.0084 (7)	-0.0017 (7)
C2	0.0590 (11)	0.0643 (12)	0.0555 (11)	0.0169 (9)	-0.0085 (8)	-0.0076 (9)
C3	0.0744 (13)	0.0478 (10)	0.0626 (11)	0.0254 (9)	-0.0234 (9)	-0.0171 (8)
C4	0.0680 (11)	0.0309 (8)	0.0600 (10)	0.0107 (7)	-0.0274 (9)	-0.0082 (7)
C5	0.0546 (8)	0.0258 (6)	0.0398 (7)	0.0028 (6)	-0.0231 (6)	-0.0023 (5)
C6	0.0324 (6)	0.0328 (7)	0.0304 (6)	-0.0034 (5)	0.0012 (5)	0.0042 (5)
C7	0.0400 (7)	0.0479 (8)	0.0307 (7)	0.0045 (6)	-0.0003 (6)	0.0028 (6)
C8	0.0310(7)	0.0437 (8)	0.0475 (8)	0.0024 (6)	-0.0010 (6)	0.0051 (7)
C9	0.0418 (8)	0.0454 (9)	0.0564 (10)	-0.0066 (7)	0.0025 (7)	-0.0064 (7)
C10	0.0420 (8)	0.0553 (10)	0.0452 (9)	-0.0039 (7)	0.0003 (7)	-0.0075 (7)

Geometric parameters (Å, °)

Zn1—O1W ⁱ	2.0896 (11)	C2—C3	1.379 (3)
Zn1—O1W	2.0896 (11)	C2—H2A	0.9300
Zn1—N1 ⁱ	2.1477 (13)	C3—C4	1.367 (3)
Zn1—N1	2.1477 (13)	С3—НЗА	0.9300
Zn1—O1 ⁱ	2.1529 (10)	C4—C5	1.392 (2)
Zn1—O1	2.1529 (10)	C4—H4A	0.9300
S1—C8	1.7861 (16)	C5—C5 ⁱ	1.478 (4)
S1—C7	1.8095 (15)	C6—C7	1.5247 (19)
N1—C1	1.339 (2)	С7—Н7А	0.9700
N1—C5	1.3447 (19)	С7—Н7В	0.9700
O1W—H1WA	0.825 (14)	C8—C9	1.382 (2)
O1W—H1WB	0.817 (14)	C8—C10	1.387 (2)
O1—C6	1.2557 (16)	C9—C10 ⁱⁱ	1.388 (2)
O2—C6	1.2506 (17)	С9—Н9А	0.9300
C1—C2	1.388 (3)	C10—C9 ⁱⁱ	1.388 (2)
C1—H1A	0.9300	C10—H10A	0.9300
O1W ⁱ —Zn1—O1W	98.69 (7)	C1—C2—H2A	120.8
O1W ⁱ —Zn1—N1 ⁱ	168.43 (5)	C4—C3—C2	119.51 (17)
O1W—Zn1—N1 ⁱ	92.47 (5)	C4—C3—H3A	120.2
O1W ⁱ —Zn1—N1	92.47 (5)	С2—С3—НЗА	120.2
O1W—Zn1—N1	168.43 (5)	C3—C4—C5	119.63 (17)
N1 ⁱ —Zn1—N1	76.59 (7)	С3—С4—Н4А	120.2

O1W ⁱ —Zn1—O1 ⁱ	86.70 (4)	C5—C4—H4A	120.2
O1W—Zn1—O1 ⁱ	92.97 (4)	N1—C5—C4	121.03 (16)
$N1^{i}$ —Zn1—O1 ⁱ	89.66 (4)	N1—C5—C5 ⁱ	115.91 (9)
N1—Zn1—O1 ⁱ	90.74 (4)	C4—C5—C5 ⁱ	123.05 (11)
O1W ⁱ —Zn1—O1	92.97 (4)	O2—C6—O1	125.11 (13)
O1W—Zn1—O1	86.70 (4)	O2—C6—C7	118.57 (12)
N1 ⁱ —Zn1—O1	90.74 (4)	O1—C6—C7	116.32 (12)
N1—Zn1—O1	89.66 (4)	C6—C7—S1	114.48 (10)
O1 ⁱ —Zn1—O1	179.49 (5)	С6—С7—Н7А	108.6
C8—S1—C7	100.80 (7)	S1—C7—H7A	108.6
C1—N1—C5	118.97 (14)	С6—С7—Н7В	108.6
C1—N1—Zn1	125.31 (11)	S1—C7—H7B	108.6
C5—N1—Zn1	115.42 (11)	H7A—C7—H7B	107.6
Zn1—O1W—H1WA	127.8 (14)	C9—C8—C10	119.04 (15)
Zn1—O1W—H1WB	97.9 (14)	C9—C8—S1	120.80 (13)
H1WA—O1W—H1WB	104.3 (17)	C10—C8—S1	120.15 (13)
C6—O1—Zn1	125.00 (9)	C8—C9—C10 ⁱⁱ	120.52 (16)
N1—C1—C2	122.49 (17)	С8—С9—Н9А	119.7
N1—C1—H1A	118.8	C10 ⁱⁱ —C9—H9A	119.7
C2—C1—H1A	118.8	C8—C10—C9 ⁱⁱ	120.43 (16)
C3—C2—C1	118.3 (2)	C8—C10—H10A	119.8
С3—С2—Н2А	120.8	C9 ⁱⁱ —C10—H10A	119.8
C3—C2—H2A O1W ⁱ —Zn1—N1—C1	120.8 7.41 (13)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5	119.8 0.0 (3)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1	120.8 7.41 (13) -157.1 (2)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4	119.8 0.0 (3) 2.5 (2)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1	120.8 7.41 (13) -157.1 (2) -176.39 (15)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4	119.8 0.0 (3) 2.5 (2) -171.45 (11)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C1	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 N1 ⁱ —Zn1—N1—C5	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2)
C3—C2—H2A $O1W^{i}$ —Zn1—N1—C1 O1W—Zn1—N1—C1 $N1^{i}$ —Zn1—N1—C1 $O1^{i}$ —Zn1—N1—C1 O1—Zn1—N1—C1 $O1W^{i}$ —Zn1—N1—C5 O1W—Zn1—N1—C5 $N1^{i}$ —Zn1—N1—C5 $O1^{i}$ —Zn1—N1—C5	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 N1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1—Zn1—N1—C5	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17)
C3—C2—H2A O1 W^{i} —Zn1—N1—C1 O1 W —Zn1—N1—C1 N1 i —Zn1—N1—C1 O1 i —Zn1—N1—C1 O1 $-$ Zn1—N1—C1 O1 W^{i} —Zn1—N1—C5 O1 W —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 $-$ Zn1—N1—C5 O1 $-$ Zn1—N1—C5 O1 $-$ Zn1—N1—C5 O1 $-$ Zn1—N1—C5 O1 $-$ Zn1—N1—C5	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1W ⁱ —Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1W ⁱ —Zn1—N1—C5 O1W ⁱ —Zn1—O1—C6 O1W—Zn1—O1—C6	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12) 55.61 (13)
C3—C2—H2A $O1W^{i}$ —Zn1—N1—C1 O1W—Zn1—N1—C1 $N1^{i}$ —Zn1—N1—C1 $O1^{i}$ —Zn1—N1—C1 O1—Zn1—N1—C1 $O1W^{i}$ —Zn1—N1—C5 O1W—Zn1—N1—C5 $O1^{i}$ —Zn1—N1—C5 $O1^{i}$ —Zn1—N1—C5 $O1^{i}$ —Zn1—N1—C5 $O1W^{i}$ —Zn1—O1—C6 $O1W^{i}$ —Zn1—O1—C6 $N1^{i}$ —Zn1—O1—C6	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6 C7—S1—C8—C9	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12) 55.61 (13) -80.93 (14)
C3—C2—H2A O1 W^{i} —Zn1—N1—C1 O1 W —Zn1—N1—C1 N1 i —Zn1—N1—C1 O1 i —Zn1—N1—C1 O1 $-$ Zn1—N1—C1 O1 W^{i} —Zn1—N1—C5 O1 W —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 $-$ Zn1—N1—C5 O1 W^{i} —Zn1—O1—C6 N1 i —Zn1—O1—C6 N1 $-$ Zn1—O1—C6	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12) 155.84 (12)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6 C7—S1—C8—C9 C7—S1—C8—C10	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12) 55.61 (13) -80.93 (14) 100.14 (14)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1W ⁱ —Zn1—O1—C6 N1 ⁱ —Zn1—O1—C6 N1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12) 155.84 (12) 14.13 (13)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6 C7—S1—C8—C9 C7—S1—C8—C10 C10—C8—C9—C10 ⁱⁱ	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12) 55.61 (13) -80.93 (14) 100.14 (14) -1.0 (3)
C3—C2—H2A O1 W^{i} —Zn1—N1—C1 O1 W —Zn1—N1—C1 N1 i —Zn1—N1—C1 O1 i —Zn1—N1—C1 O1 $-$ Zn1—N1—C1 O1 W^{i} —Zn1—N1—C5 O1 W —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 i —Zn1—N1—C5 O1 W^{i} —Zn1—O1—C6 O1 W^{i} —Zn1—O1—C6 N1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6 O1 i —Zn1—O1—C6	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12) 155.84 (12) 14.13 (13) -0.6 (2)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6 C7—S1—C8—C9 C7—S1—C8—C10 C10—C8—C9—C10 ⁱⁱ	119.8 0.0 (3) 2.5 (2) -171.45 (11) -178.37 (15) 7.63 (19) -2.3 (2) 178.72 (18) 1.0 (2) -179.21 (9) 51.79 (17) -128.01 (12) 55.61 (13) -80.93 (14) 100.14 (14) -1.0 (3) -179.94 (13)
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1W ⁱ —Zn1—O1—C6 O1W—Zn1—O1—C6 N1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6 C5—N1—C1—C2 Zn1—N1—C1—C2	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12) 155.84 (12) 14.13 (13) -0.6 (2) 172.80 (13)	$C9^{ii}-C10-H10A$ $C2-C3-C4-C5$ $C1-N1-C5-C4$ $Zn1-N1-C5-C5^{i}$ $Zn1-N1-C5-C5^{i}$ $C3-C4-C5-N1$ $C3-C4-C5-C5^{i}$ $Zn1-01-C6-02$ $Zn1-01-C6-02$ $Zn1-01-C6-C7$ $02-C6-C7-S1$ $01-C6-C7-S1$ $C8-S1-C7-C6$ $C7-S1-C8-C9$ $C7-S1-C8-C9$ $C7-S1-C8-C10$ $C10-C8-C9-C10^{ii}$ $S1-C8-C9-C10^{ii}$ $C9-C8-C10-C9^{ii}$	119.8 $0.0 (3)$ $2.5 (2)$ $-171.45 (11)$ $-178.37 (15)$ $7.63 (19)$ $-2.3 (2)$ $178.72 (18)$ $1.0 (2)$ $-179.21 (9)$ $51.79 (17)$ $-128.01 (12)$ $55.61 (13)$ $-80.93 (14)$ $100.14 (14)$ $-1.0 (3)$ $-179.94 (13)$ $1.0 (3)$
C3—C2—H2A O1W ⁱ —Zn1—N1—C1 O1W—Zn1—N1—C1 N1 ⁱ —Zn1—N1—C1 O1 ⁱ —Zn1—N1—C1 O1—Zn1—N1—C1 O1W ⁱ —Zn1—N1—C5 O1W—Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1 ⁱ —Zn1—N1—C5 O1W ⁱ —Zn1—O1—C6 O1W ⁱ —Zn1—O1—C6 N1 ⁱ —Zn1—O1—C6 N1 ⁱ —Zn1—O1—C6 O1 ⁱ —Zn1—O1—C6 N1—Zn1—O1—C6 N1—Zn1—O1—C2 Zn1—N1—C1—C2 N1—C1—C2—C3	120.8 7.41 (13) -157.1 (2) -176.39 (15) 94.13 (13) -85.55 (13) -179.03 (10) 16.4 (3) -2.82 (7) -92.30 (10) 88.01 (10) 63.39 (12) -35.15 (12) -127.58 (12) 155.84 (12) 14.13 (13) -0.6 (2) 172.80 (13) -1.7 (3)	C9 ⁱⁱ —C10—H10A C2—C3—C4—C5 C1—N1—C5—C4 Zn1—N1—C5—C4 C1—N1—C5—C5 ⁱ Zn1—N1—C5—C5 ⁱ C3—C4—C5—N1 C3—C4—C5—N1 C3—C4—C5—C5 ⁱ Zn1—O1—C6—O2 Zn1—O1—C6—C7 O2—C6—C7—S1 O1—C6—C7—S1 C8—S1—C7—C6 C7—S1—C8—C9 C7—S1—C8—C9 C7—S1—C8—C10 C10—C8—C9—C10 ⁱⁱ S1—C8—C10—C9 ⁱⁱ	119.8 $0.0 (3)$ $2.5 (2)$ $-171.45 (11)$ $-178.37 (15)$ $7.63 (19)$ $-2.3 (2)$ $178.72 (18)$ $1.0 (2)$ $-179.21 (9)$ $51.79 (17)$ $-128.01 (12)$ $55.61 (13)$ $-80.93 (14)$ $100.14 (14)$ $-1.0 (3)$ $-179.94 (13)$ $1.0 (3)$ $179.95 (13)$

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+3/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WA····O2 ⁱⁱⁱ	0.83 (1)	1.90 (2)	2.7107 (15)	170.(2)
O1W—H1WB···O2	0.82 (1)	1.86 (2)	2.6582 (16)	164 (2)
Symmetry codes: (iii) x , $-y+1$, $z-1/2$.				

Fig. 1

Fig. 2

